Copyright © 2020 ぬこぷろ
All Rights Reserved

Python機械学習のエッセンスの評価
データ更新日:2020-09-13

Python分野での評価

書籍の評価について

簡単に次のような指標から評価を計算しています。

  • ・書籍が紹介されているQiita記事のいいね数と更新日
  • ・書籍が紹介されているサイトのGoogleでの検索順位
  • ・Twitterで書籍に関する最新ツイートのいいね数とリツイート数

詳細な評価の計算方法については下記をご覧ください。

書籍の評価について

順位21
総合点7
Googleの検索結果での点数2
Qiitaの記事での点数4
twitterでの点数1

基本情報

内容機械学習の原理を知るための、初めての入門 ※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は具体的なデータ分析の手法を説明する意図で書かれたものではありません。 実用的な目的ならscikit-learnやChainerなどの既存のフレームワークを使うべきですが、本書では機械学習のいくつかの有名なアルゴリズムを、自分でゼロから実装することを目標としています。こうすることにより、とかくブラックボックスになりがちな機械学習の仕組みを理解し、さらなる応用力と問題解決力を身につけることができるようになります。 また、処理系にはデファクトスタンダードであるPythonを使い、機械学習に必要な数学の知識もわかりやすく解説しています。 これから機械学習を始める学生さんや、いきなりプロジェクトに放り込まれていまいち理解できないままデータ分析の仕事をしているエンジニアの方にも最適です。
目次はじめに 第01章 学習を始める前に  01 本書の目的  02 本書は何を含まないか  03 機械学習の初歩  04 実行環境の準備 第02章 Pythonの基本  01 プログラムの実行方法  02 基本的な文法  03 数値と文字列  04 複数行処理  05 制御構造  06 リスト、辞書、集合  07 関数定義  08 オブジェクト指向  09 モジュール  10 ファイル操作  11 例外処理 第03章 機械学習に必要な数学  01 基本事項の確認  02 線形代数  03 微積分 第04章 Pythonによる数値計算  01 数値計算の基本  02 NumPyの基本  03 配列の基本計算  04 疎行列  05 NumPy/SciPyによる線形代数  06 乱数  07 データの可視化  08 数理最適化  09 統計 第05章 機械学習アルゴリズム  01 準備  02 回帰  03 リッジ回帰  04 汎化と過学習  05 ラッソ回帰  06 ロジスティック回帰  07 サポートベクタマシン  08 k-Means法  09 主成分分析(PCA) INDEX
著者加藤公一
出版日2018-09-20
ページ数384
出版社SBクリエイティブ

Google検索結果上位で紹介されているページ数

本を紹介しているページの順位ページ総数
51
※ぬこぷろでは様々な検索キーワードで計測しています。

本を紹介しているQiitaの記事

記事名いいね数
【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 (2019年改定版)1300
初心者から data scientist・AI engineer になるための勉強法&おすすめサイト・本を一つの記事にまとめたかった66
【書籍まとめ】データサイエンス初心者が1年間で読んだ本33

他の分野での評価

AI」での評価

順位14
総合点7
Qiitaの記事での点数6
twitterでの点数1