Python生成 Deep Learningの評価
データ更新日:2020-12-22

Python分野での評価

書籍の評価について

簡単に次のような指標から評価を計算しています。

  • ・書籍が紹介されているQiita記事のいいね数と更新日
  • ・書籍が紹介されているサイトのGoogleでの検索順位
  • ・Twitterで書籍に関する最新ツイートのいいね数とリツイート数
  • ・「初心者」や「入門書」など特定のキーワードとコンテンツ(例えばQiitaの記事)の関連性

詳細な評価の計算方法については下記をご覧ください。

書籍の評価について

順位12
総合点2
Qiitaの記事での点数1
Twitterでの点数1

過去の順位の推移

グラフについて

  • ・グラフのデータはぬこぷろで計測した、最大で過去5回分を表示しています。
  • ・「順位」について、次の2点の場合は圏外扱いとしてグラフ上には表示しません。なので、グラフ上では途切れた線が表示されることもあります。
    ①ぬこぷろが書籍の点数を計算する際、点数化の元となる最新のメディア(Qiitaの記事など)に書籍の情報が掲載されていなかった場合。ぬこぷろは最新のメディア情報を収集して書籍の点数を計算するため、過去点数計算した際にその書籍がメディアに掲載されていても、点数計算時にぬこぷろが収集したメディアに書籍情報がなければ圏外扱いとなります。
    ②順位が30位を下回った場合。
  • ・「総合点」が0点なのは上記「順位」の圏外扱いの①とと同様に、ぬこぷろが書籍の点数を計算する際、点数化の元となる最新のメディア(Qiitaの記事など)に書籍の情報が掲載されていなかった場合となります。

基本情報

ISBN-139784873119205
内容生成型ディープラーニングの基礎から応用までを網羅! 生成型ディープラーニングの解説書。「絵を描く」「曲を作る」といった、これまで人間にしかできないと思われていた創造的な作業を機械に行わせるという、いま最もホットな技術の基礎から応用までをJupyterノートブック環境で実際に試しながら学びます。第I部は基礎編です。機械学習プログラミング、変分オートエンコーダ、GANやVAEなど、生成モデルの作成において重要な基礎技術を学びます。第II部は応用編です。CycleGAN、エンコーダ―デコーダモデル、MuseGANなどのモデルを作成し、作画、作文、作曲といった創造的なタスクに取り組みます。さらには、実環境を用いずにゲームプレイAIの学習を可能にする、世界モデルを使った強化学習にも取り組みます。最後に生成モデリングの未来として、StyleGAN、BigGAN、BERT、GPT-2、MuseNetなどのアーキテクチャを紹介します。
著者
出版日
出版社オライリー・ジャパン
データ提供元openBD, 国立国会図書館書誌データ
※この書籍はopenBDより取得したデータを元に、国立国会図書館書誌データを補完して掲載しています。