Copyright © 2020 ぬこぷろ
All Rights Reserved

Python本物のデータ分析力が身に付く本の評価
データ更新日:2020-09-13

Python分野での評価

書籍の評価について

簡単に次のような指標から評価を計算しています。

  • ・書籍が紹介されているQiita記事のいいね数と更新日
  • ・書籍が紹介されているサイトのGoogleでの検索順位
  • ・Twitterで書籍に関する最新ツイートのいいね数とリツイート数

詳細な評価の計算方法については下記をご覧ください。

書籍の評価について

順位25
総合点3
Qiitaの記事での点数2
twitterでの点数1

基本情報

内容込み式の演習(ワーク)を通して、本物のデータ分析力を身に付けられます。 本書で学べるデータ分析の鉄則は、どんな業種・業態の人でも役立つ汎用的なものです。これらは、大阪ガスのデータ分析専門部隊が長年積み上げてきたノウハウの一部です。小難しい理屈はかみ砕き、必要最小限の知識で効果を出せるワークを、ふんだんに盛り込んでいるので、体でデータ分析を覚えられます。 5人の共同著者らは本書の内容を基に、2日間のワークショップという形で全国約1500人にセミナーを提供してきた実績があります。本書では、そのセミナーとほぼ同じ内容を、自分のペースで体験できます。
目次この本って何? 用意するもの 【プロローグ】 データ分析の心構え 1. よく起こる問題 2. データ分析って何? 3. データから考えない 4. プロセスが全て 【第1章】 データ分析を設計する 1-1. 分析ストーリーの見える化って何? 1-2. なぜ「分析の概念図」を描くのか? 1-3. 分析の概念図はこう描く 1-4. 問題領域を決める (1) 問題領域を挙げる (2) 問題領域を選ぶ 1-5. 評価軸を決める (1) 評価軸を挙げる (2) 評価軸を選ぶ 1-6. 問題を文で表す 1-7. 要因を挙げる 【閑話休題】なぜ評価軸を挙げるのか? 1-8. 要因を選ぶ (1) 重要度で仕分けする (2) 入手しやすさで仕分けする (3) 分析する要因を決める 1-9. 部品をつなげる (1) 問題領域と評価軸を書く (2) 評価軸に要因をつなげる (3) 要因をグルーピングする (4) 要因同士の関係を推測してつなげる (5) 分析の流れを説明できるか確認する 第1章の理解度チェック 【第2章】データを事前にチェックする 2-1. なぜ事前チェックするのか? 2-2. データの出所をチェックする (1) データの5W1H (2) 一次情報かどうか 2-3. データの全体概要をチェックする 2-4. 個別の値をチェックする (1) 欠損値をチェックする (2) 外れ値をチェックする (3) データの方向をチェックする (4) データをクレンジングする 2-5. データの傾向をチェックする 第2章の理解度チェック 【第3章】 分析方法を選ぶ 3-1. 代表値を使い分ける (1) 3つの代表値を知る (2) 代表値の得手・不得手 3-2. クロス集計する (1) クロス集計とは? (2) クロス集計の注意点 第3章の理解度チェック 【第4章】 ケース実習「新商品の配置問題」 4-1. データ分析を設計する (1) 問題領域を決める (2) 評価軸を決める (3) 問題を文で表す (4) 要因を挙げる (5) 要因を選ぶ (6) 部品をつなげる 4-2. データを事前にチェックする 4-3. 分析方法を選ぶ 4-4. 分析を実行する 【第5章】 標準偏差を使おう 5-1. 標準偏差って何? 5-2. 標準偏差はこう使う (1) 多様性や格差を定量化する、比較する (2) 不確実性を定量化する、比較する (3) リスクを定量化する、比較する (4) 平均値の信頼性を判断する、比較する (5) 品質を管理する 5-3. 標準偏差を計算する 5-4. 標準偏差で意思決定する (1) 標準偏差を使ってみる (2) 外れ値を客観的な基準で特定する (3) 2種類の標準偏差 第5章の理解度チェック 【第6章】 グループ間の差の確からしさを検証する 6-1. グループ間の大小関係は正しいとは限らない 6-2. 大小関係の確からしさをどう考える? (1) 確率で考える (2) 大小関係が確からしい確率は何で決まる? 6-3. 大小関係の確からしさを判断する (1) 危険率を見る (2) 何%以下なら確からしいか? (3) 「対応なし」と「対応あり」 第6章の理解度チェック 【第7章】 分析結果の受け止め方と伝え方 7-1. 結果の解釈はここに注意 (1) 仮説確証バイアス (2) アンカリング (3) フレーミング (4) プライミング (5) 擬似相関 (6) まとめ 7-2. 結果の表現はここに注意 (1) データの集め方 (2) グラフの見せ方 (3) 言葉の表現の仕方 (4) まとめ 【エピローグ】 1. 全体を振り返って 2. さらなる学習のために
著者河村真一, 日置孝一, 野寺綾
出版日2016-06
ページ数204
出版社日経BP

本を紹介しているQiitaの記事

記事名いいね数
機械学習について一回挫折してしまったエンジニアが何とかお仕事で機械学習を使えるようになるまで264
データサイエンスをビジネス成果に繋げる本13冊読んだので書評書く。7