Copyright © 2020 ぬこぷろ
All Rights Reserved

AI画像認識の評価
データ更新日:2020-09-13

AI分野での評価

書籍の評価について

簡単に次のような指標から評価を計算しています。

  • ・書籍が紹介されているQiita記事のいいね数と更新日
  • ・書籍が紹介されているサイトのGoogleでの検索順位
  • ・Twitterで書籍に関する最新ツイートのいいね数とリツイート数

詳細な評価の計算方法については下記をご覧ください。

書籍の評価について

順位1
総合点489
Qiitaの記事での点数5
twitterでの点数484

基本情報

内容基礎的な理論から、深層学習をはじめとする最新手法までを網羅し、発展著しい分野を俯瞰できるまたとない一冊。
目次第1章 画像認識の概要 画像認識とは/画像認識の分類/クラス認識の手順/深い構造と浅い構造/物体検出/インスタンス認識/画像認識の認識性能を向上させるための原則/数学表記について 第2章 局所特徴 局所特徴とは/検出器/空間フィルタリング/基本的な検出器/ 回転やアフィン変換に頑健な検出器/記述子/検出器と記述子の組み合わせ 第3章 統計的特徴抽出 統計的特徴抽出とは/主成分分析/白色化/フィッシャー線形判別分析/正準相関分析/偏最小2乗法 第4章 コーディングとプーリング コーディングとプーリングの概要/確率分布を利用したコーディング/局所特徴のコードワードによる再構築/多様体学習/特徴写像の線形内積によるカーネル関数近似/空間情報の活用 第5章 分類 分類とは/ベイズ決定則/識別関数/一般的な教師付き学習の枠組み/最適化/線形識別関数/確率的識別関数/局所学習/集団学習/分類結果の評価 第6章 畳み込みニューラルネットワーク 画像認識における深層学習/フィードフォワードニューラルネットワーク/畳み込みニューラルネットワーク/実装上の工夫/パラメータの最適化/畳み込みニューラルネットワークの例 第7章 物体検出 物体検出とは/物体領域候補の提案/線形分類器を用いた物体検出/集団学習を用いた物体検出/非最大値の抑制/畳み込みニューラルネットワークを利用した物体検出/物体検出の評価 第8章 インスタンス認識と画像検索 インスタンス認識/画像検索/画像検索の評価 第9章 さらなる話題 セマンティックセグメンテーション/画像からのキャプション生成/画像生成と敵対的生成ネットワーク
著者原田達也
出版日2017-05
ページ数277
出版社講談社サイエンティフィク

本を紹介しているQiitaの記事

記事名いいね数
【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメのAI勉強方法 (2019年改定版)1300
【書籍まとめ】データサイエンス初心者が1年間で読んだ本33
Udacity自動運転エンジニアコースTerm3を終えた感想7